Planar Graphs Without Pairwise Adjacent $3$-, $4$-, $5$-, and $6$-cycle are $4$-choosable

نویسندگان

چکیده

Xu and Wu proved that if every $5$-cycle of a planar graph $G$ is not simultaneously adjacent to $3$-cycles $4$-cycles, then $4$-choosable. In this paper, we improve result as follows. If without pairwise $3$-, $4$-, $5$-, $6$-cycle,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar graphs without 4, 5 and 8-cycles are acyclically 4-choosable

In this paper, we prove that planar graphs without 4, 5 and 8-cycles are acyclically 4-choosable.

متن کامل

Locally planar graphs are 5-choosable

It is proved that every graph embedded in a fixed surface with sufficiently large edge-width is 5-choosable.

متن کامل

On 3-choosable planar graphs of girth at least 4

Let G be a plane graph of girth at least 4. Two cycles of G are intersecting if they have at least one vertex in common. In this paper, we show that if a plane graph G has neither intersecting 4-cycles nor a 5-cycle intersecting with any 4-cycle, then G is 3-choosable, which extends one of Thomassen’s results [C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (...

متن کامل

Graphs of degree 4 are 5-edge-choosable

It is shown that every simple graph with maximal degree 4 is 5-edgechoosable. c © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 250–264, 1999

متن کامل

Planar graphs without 4-, 5- and 8-cycles are 3-colorable

In this paper we prove that every planar graph without 4, 5 and 8-cycles is 3-colorable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2021

ISSN: ['1027-5487', '2224-6851']

DOI: https://doi.org/10.11650/tjm/210701